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Preface 

The International Energy Agency 

The International Energy Agency (IEA) was established in 1974 within the framework of the Organisation for Economic Co-operation 

and Development (OECD) to implement an international energy programme. A basic aim of the IEA is to foster international co-

operation among the 30 IEA participating countries and to increase energy security through energy research, development and 

demonstration in the fields of technologies for energy efficiency and renewable energy sources.  

The IEA Energy in Buildings and Communities Programme 

The IEA co-ordinates international energy research and development (R&D) activities through a comprehensive portfolio of Technology 

Collaboration Programmes (TCPs). The mission of the IEA Energy in Buildings and Communities (IEA EBC) TCP is to support the 

acceleration of the transformation of the built environment towards more energy efficient and sustainable buildings and communities, by 

the development and dissemination of knowledge, technologies and processes and other solutions through international collaborative 

research and open innovation. (Until 2013, the IEA EBC Programme was known as the IEA Energy Conservation in Buildings and 

Community Systems Programme, ECBCS.) 

The high priority research themes in the EBC Strategic Plan 2019-2024 are based on research drivers, national programmes within the 

EBC participating countries, the Future Buildings Forum (FBF) Think Tank Workshop held in Singapore in October 2017 and a Strategy 

Planning Workshop held at the EBC Executive Committee Meeting in November 2017. The research themes represent a collective input 

of the Executive Committee members and Operating Agents to exploit technological and other opportunities to save energy in the 

buildings sector, and to remove technical obstacles to market penetration of new energy technologies, systems and processes. Future 

EBC collaborative research and innovation work should have its focus on these themes. 

At the Strategy Planning Workshop in 2017, some 40 research themes were developed. From those 40 themes, 10 themes of special 

high priority have been extracted, taking into consideration a score that was given to each theme at the workshop. The 10 high priority 

themes can be separated in two types namely 'Objectives' and 'Means'. These two groups are distinguished for a better understanding 

of the different themes.  

Objectives - The strategic objectives of the EBC TCP are as follows: 

• reinforcing the technical and economic basis for refurbishment of existing buildings, including financing, engagement of 

stakeholders and promotion of co-benefits; 

• improvement of planning, construction and management processes to reduce the performance gap between design stage 

assessments and real-world operation; 

• the creation of 'low tech', robust and affordable technologies; 

• the further development of energy efficient cooling in hot and humid, or dry climates, avoiding mechanical cooling if possible; 

• the creation of holistic solution sets for district level systems taking into account energy grids, overall performance, business 

models, engagement of stakeholders, and transport energy system implications. 

Means - The strategic objectives of the EBC TCP will be achieved by the means listed below: 

• the creation of tools for supporting design and construction through to operations and maintenance, including building energy 

standards and life cycle analysis (LCA); 

• benefitting from 'living labs' to provide experience of and overcome barriers to adoption of energy efficiency measures; 

• improving smart control of building services technical installations, including occupant and operator interfaces; 

• addressing data issues in buildings, including non-intrusive and secure data collection; 

• the development of building information modelling (BIM) as a game changer, from design and construction through to operations 

and maintenance. 

The themes in both groups can be the subject for new Annexes, but what distinguishes them is that the 'objectives' themes are final 

goals or solutions (or part of) for an energy efficient built environment, while the 'means' themes are instruments or enablers to reach 

such a goal. These themes are explained in more detail in the EBC Strategic Plan 2019-2024. 

The Executive Committee 

Overall control of the IEA EBC Programme is maintained by an Executive Committee, which not only monitors existing projects, but also 

identifies new strategic areas in which collaborative efforts may be beneficial. As the Programme is based on a contract with the IEA, 

the projects are legally established as Annexes to the IEA EBC Implementing Agreement. At the present time, the following projects 

have been initiated by the IEA EBC Executive Committee, with completed projects identified by (*) and joint projects with the IEA Solar 

Heating and Cooling Technology Collaboration Programme by (☼): 
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Annex 1: Load Energy Determination of Buildings (*) 

Annex 2: Ekistics and Advanced Community Energy Systems (*) 

Annex 3: Energy Conservation in Residential Buildings (*) 

Annex 4: Glasgow Commercial Building Monitoring (*) 

Annex 5: Air Infiltration and Ventilation Centre  

Annex 6: Energy Systems and Design of Communities (*) 

Annex 7: Local Government Energy Planning (*) 

Annex 8: Inhabitants Behaviour with Regard to Ventilation (*) 

Annex 9: Minimum Ventilation Rates (*) 

Annex 10: Building HVAC System Simulation (*) 

Annex 11: Energy Auditing (*) 

Annex 12: Windows and Fenestration (*) 

Annex 13: Energy Management in Hospitals (*) 

Annex 14: Condensation and Energy (*) 

Annex 15: Energy Efficiency in Schools (*) 

Annex 16: BEMS 1- User Interfaces and System Integration (*) 

Annex 17: BEMS 2- Evaluation and Emulation Techniques (*) 

Annex 18: Demand Controlled Ventilation Systems (*) 

Annex 19: Low Slope Roof Systems (*) 

Annex 20: Air Flow Patterns within Buildings (*) 

Annex 21: Thermal Modelling (*) 

Annex 22: Energy Efficient Communities (*) 

Annex 23: Multi Zone Air Flow Modelling (COMIS) (*) 

Annex 24: Heat, Air and Moisture Transfer in Envelopes (*) 

Annex 25: Real time HVAC Simulation (*) 

Annex 26: Energy Efficient Ventilation of Large Enclosures (*) 

Annex 27: Evaluation and Demonstration of Domestic Ventilation Systems (*) 

Annex 28: Low Energy Cooling Systems (*) 

Annex 29: ☼ Daylight in Buildings (*)  

Annex 30: Bringing Simulation to Application (*) 

Annex 31: Energy-Related Environmental Impact of Buildings (*) 

Annex 32: Integral Building Envelope Performance Assessment (*) 

Annex 33: Advanced Local Energy Planning (*) 

Annex 34: Computer-Aided Evaluation of HVAC System Performance (*) 

Annex 35: Design of Energy Efficient Hybrid Ventilation (HYBVENT) (*) 

Annex 36: Retrofitting of Educational Buildings (*) 

Annex 37: Low Exergy Systems for Heating and Cooling of Buildings (LowEx) (*) 

Annex 38: ☼ Solar Sustainable Housing (*)  

Annex 39: High Performance Insulation Systems (*) 

Annex 40: Building Commissioning to Improve Energy Performance (*) 

Annex 41: Whole Building Heat, Air and Moisture Response (MOIST-ENG) (*) 

Annex 42: The Simulation of Building-Integrated Fuel Cell and Other Cogeneration Systems (FC+COGEN-SIM) (*) 

Annex 43: ☼ Testing and Validation of Building Energy Simulation Tools (*) 

Annex 44: Integrating Environmentally Responsive Elements in Buildings (*) 

Annex 45: Energy Efficient Electric Lighting for Buildings (*) 

Annex 46: Holistic Assessment Tool-kit on Energy Efficient Retrofit Measures for Government Buildings (EnERGo) (*) 

Annex 47: Cost-Effective Commissioning for Existing and Low Energy Buildings (*) 

Annex 48: Heat Pumping and Reversible Air Conditioning (*) 

Annex 49: Low Exergy Systems for High Performance Buildings and Communities (*) 

Annex 50: Prefabricated Systems for Low Energy Renovation of Residential Buildings (*) 

Annex 51: Energy Efficient Communities (*) 

Annex 52: ☼ Towards Net Zero Energy Solar Buildings (*)  

Annex 53: Total Energy Use in Buildings: Analysis and Evaluation Methods (*) 

Annex 54: Integration of Micro-Generation and Related Energy Technologies in Buildings (*) 

Annex 55: Reliability of Energy Efficient Building Retrofitting - Probability Assessment of Performance and Cost (RAP-RETRO) (*) 

Annex 56: Cost Effective Energy and CO2 Emissions Optimization in Building Renovation (*) 

Annex 57: Evaluation of Embodied Energy and CO2 Equivalent Emissions for Building Construction (*) 

Annex 58: Reliable Building Energy Performance Characterisation Based on Full Scale Dynamic Measurements (*) 

Annex 59: High Temperature Cooling and Low Temperature Heating in Buildings (*) 
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Annex 60: New Generation Computational Tools for Building and Community Energy Systems (*) 

Annex 61: Business and Technical Concepts for Deep Energy Retrofit of Public Buildings (*) 

Annex 62: Ventilative Cooling (*) 

Annex 63: Implementation of Energy Strategies in Communities (*) 

Annex 64: LowEx Communities - Optimised Performance of Energy Supply Systems with Exergy Principles (*) 

Annex 65: Long-Term Performance of Super-Insulating Materials in Building Components and Systems (*) 

Annex 66: Definition and Simulation of Occupant Behavior in Buildings (*) 

Annex 67: Energy Flexible Buildings (*) 

Annex 68: Indoor Air Quality Design and Control in Low Energy Residential Buildings (*) 

Annex 69: Strategy and Practice of Adaptive Thermal Comfort in Low Energy Buildings (*) 

Annex 70: Energy Epidemiology: Analysis of Real Building Energy Use at Scale (*) 

Annex 71: Building Energy Performance Assessment Based on In-situ Measurements (*) 

Annex 72: Assessing Life Cycle Related Environmental Impacts Caused by Buildings (*) 

Annex 73: Towards Net Zero Energy Resilient Public Communities (*) 

Annex 74: Competition and Living Lab Platform (*) 

Annex 75: Cost-effective Building Renovation at District Level Combining Energy Efficiency and Renewables (*) 

Annex 76: ☼ Deep Renovation of Historic Buildings Towards Lowest Possible Energy Demand and CO2 Emissions (*) 

Annex 77: ☼ Integrated Solutions for Daylight and Electric Lightin (*) 

Annex 78: Supplementing Ventilation with Gas-phase Air Cleaning, Implementation and Energy Implications (*) 

Annex 79: Occupant-Centric Building Design and Operation 

Annex 80: Resilient Cooling (*) 

Annex 81: Data-Driven Smart Buildings 

Annex 82: Energy Flexible Buildings Towards Resilient Low Carbon Energy Systems 

Annex 83: Positive Energy Districts 

Annex 84: Demand Management of Buildings in Thermal Networks 

Annex 85: Indirect Evaporative Cooling 

Annex 86: Energy Efficient Indoor Air Quality Management in Residential Buildings 

Annex 87: Energy and Indoor Environmental Quality Performance of Personalised Environmental Control Systems 

Annex 88: Evaluation and Demonstration of Actual Energy Efficiency of Heat Pump Systems in Buildings 

Annex 89: Ways to Implement Net-zero Whole Life Carbon Buildings 

Annex 90: EBC Annex 90 / SHC Task 70 Low Carbon, High Comfort Integrated Lighting 

Annex 91: Open BIM for Energy Efficient Buildings 

Annex 92: Smart Materials for Energy-Efficient Heating, Cooling and IAQ Control in Residential Buildings 

Annex 93: Energy Resilience of the Buildings in Remote Cold Regions 

Annex 94: Validation and Verification of In-situ Building Energy Performance Measurement Techniques 

Annex 95: Human-centric Building Design and Operation for a Changing Climate 

Annex 96: Grid Integrated Control of Buildings 

 

 

Working Group - Energy Efficiency in Educational Buildings (*) 

Working Group - Indicators of Energy Efficiency in Cold Climate Buildings (*) 

Working Group - Annex 36 Extension: The Energy Concept Adviser (*) 

Working Group - HVAC Energy Calculation Methodologies for Non-residential Buildings (*) 

Working Group - Cities and Communities 

Working Group - Building Energy Codes 
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Summary 

Subtask C of IEA EBC Annex 81 aims to provide a comprehensive understanding of the landscape of data-

driven smart building applications, with a particular focus on fault detection and diagnosis (FDD) and building 

to grid (B2G) applications. It is believed that the current development of sensing, communication, and other 

computational and data advancements have opened up great opportunities to understand and operate build-

ings in a holistic manner to maximize a building’s performance.  Subtask C examines evidence from the open 

literature and it surveys smart-buildings experts to evaluate available Key Performance Indicators (KPIs), data-

driven strategies, critical tools, frameworks, datasets, and primary market adoption barriers for FDD and B2G 

applications. Section 1 of this report provides a high-level overview of Subtask C as a whole, as well as a brief 

introduction to each of its individual activities. 

Section 2 discusses the use of benchmarking algorithms.  Benchmarking a building’s performance, via 

KPIs, is critical to understanding the performance of a data-driven software application.  However, it is chal-

lenging due to the complex nature of the multi-criteria assessment involved. Ideally, buildings need to be both 

energy-efficient and provide comfort to occupants, while also being able to provide services to energy grids in 

the form of demand response (energy flexibility). This activity firstly reviewed and summarized over 400 KPIs 

reported in the literature. Despite the abundance of proposed KPIs in the literature, challenges persist due to 

unclear definitions, unspecified sensor/meter data requirements, and a lack of real-life contextualization, es-

pecially at the whole-building level.  

The activity then assessed the feasibility of implementing the collected KPIs using data from the existing infra-

structure of five office buildings located in the Netherlands and Switzerland. A survey was also performed to 

seek stakeholders’ opinions on the significance of various KPIs. The case studies and stakeholders’ survey 

studies clearly revealed that there is a misalignment among KPI definitions in the literature, the data that is 

readily available from existing building management systems (BMS), and stakeholders’ needs. Further re-

search is required to contextualize KPIs across diverse application scenarios while taking stakeholder per-

spectives into consideration.  

Section 3 focuses on applications that use building operational data and building models to identify 

faults and isolate their root causes in an automated way. Compared with traditional expert-knowledge/ 

rule-based FDD methods, which are typically seen in current market-available FDD products, data-driven FDD 

methods require little or no a-priori knowledge, and hence can have higher accuracy and autonomy with lower 

cost.  This activity began by reviewing existing literature on data-driven FDD, including its definition, framework, 

methods, applications, and evaluation criteria. The literature review identified many promising methods and 

frameworks for implementing data-driven FDD, and for their application in different building systems.  A com-

prehensive evaluation was made of metrics developed for data-driven FDD performance evaluation.   

The literature review also found that there is generally a lack of high-fidelity data suitable for FDD development 

and evaluation (especially that from real building systems).  Therefore, to further promote market adoption of 

data-driven FDD methods, both (i) a publicly available data repository for FDD development and evaluation, 

and (ii) a list of market-available FDD software, were compiled. The results are summarized in Section 3.3.   

Based on our survey studies and the literature review, a roadmap was developed to guide industry stakehold-

ers, including building owners, end users (operators, facility managers, etc.) and building technology providers. 

It aims to communicate the barriers and possible solutions for growing the adoption of FDD applications.  Bar-

riers were identified under five categories, which include:  

● Economic and business: Costs and benefits for end-users and/or business limitations. 

● Technological: Technical knowledge, interoperability, digital infrastructure and/or data management. 

● User-related: User experience, interfaces and/or misunderstandings. 

● Regulatory: Policies, GDPR and/or cybersecurity. 



 

 

 
8/46 

● Social and societal: Cultural, community and stakeholders, benefits for society and/or environmental 
sustainability. 

The barriers and their potential solutions were identified for each stakeholder across the FDD implementation 

lifecycle, which includes the FDD solution development stage, deployment stage, data management stage, 

and fault analysis and solution handling stage.  For example, a technological barrier during the FDD solution 

development stage is the challenge to integrate the FDD solution with the BMS.  A potential solution is to adopt 

an ontology and semantic data management principles.  Another example is social barriers during the FDD 

implementation stage, including both public skepticism about data privacy, and possible impacts on employ-

ment.  Potential solutions include public awareness campaigns on the benefits of FDD and training programs. 

This roadmap helps to guide industry stakeholders through the FDD ecosystem and to provide insights and 

direction settings for future research and development.  

Section 4 contributes to standardizing B2G service assessment.  A literature review was performed on 

data-driven KPIs, relevant to the assessment of building energy flexibility during the operational phase.  81 

KPIs were identified. The review highlighted that the two main constraints in quantifying energy flexibility are 

1) many of the KPIs are baseline dependent and there is a lack of robust data-driven approaches for generating 

these baseline load profiles (i.e. when demand response is not activated); and 2) there is a lack of KPIs that 

can be computed without reference to a baseline or reference scenario inputs (baseline-free KPIs). It was also 

found that most studies (65%) were conducted using numerical simulations.  

To develop, study, test and benchmark B2G services at scale, 16 open-access building energy flexibility da-

tasets were gathered.  Section 4.3 describes these datasets and explores their use for B2G application devel-

opment and testing.  Currently, no standardized method exists for evaluating load flexibility from B2G services. 

To address this gap, an open-source toolbox in the form of a Python package is reported in Section 4.4.  It 

offers a data-driven approach for B2G service assessment using collected KPIs.  An online platform was also 

developed, which is discussed in Section 4.5.  The online platform features an ontology explorer to guide users 

through a new ‘EFOnt’ ontology (meta data schema).  It helps to identify the most suitable KPI for their energy 

flexibility assessment needs. Users can then choose to utilize the automatically collected dataset or upload 

their own dataset to assess their B2G services.  The collected KPIs, open datasets, and developed toolkits will 

facilitate benchmarking and understanding of B2G services, promoting greater market adoption in the future.   
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1. Task C overview  

Having access to diverse high-quality data (which come from sensor measurements, digital twin models, and 

other data sources), opens up a range of new possibilities for understanding and optimizing building perfor-

mance and operation from a holistic perspective. Holistic here refers to simultaneously taking into considera-

tion multiple key performance indicators (energy, comfort/health, maintenance, load flexibility, etc.), and data 

from multiple sources.   

This subtask focuses on understanding the state-of-the-art of key data-driven software applications, including 

their data-driven strategies, and identifying primary barriers for these applications to be adopted by the market. 

It also aims to address information barriers by establishing Key Performance Indicators (KPIs) and frameworks 

for benchmarking of buildings and software applications (particularly fault detection and grid enabled build-

ings). 

Subtask C summarizes critical tools, frameworks, and information for software developers to develop ‘applica-

tions’ that can be commercialized for fault detection, reducing energy consumption in buildings, and coordinat-

ing building energy demand to achieve additional electricity system benefits.  

The work of Subtask C is organized into the following three activities 

• C.1  Benchmarking algorithms. Benchmarking a building’s performance via KPIs is critical to un-

derstanding the performance of a data-driven software application.  A large quantity of data-driven 

KPIs have been reported in the literature, which can be categorized into the following four aspects: 

occupant-centric, building smartness, building energy and maintenance, and building-grid interaction. 

This activity firstly reviews and summarizes literature reported KPIs, including their algorithms (Section 

2.2).  The activity then comprehensively assesses the feasibility of implementing the collected KPIs 

using data from the existing infrastructure of five office buildings located in the Netherlands and Swit-

zerland (Section 2.3). A survey was carried out to seek stakeholders’ opinions on the significance of 

various KPIs, as outlined in Section 2.4.  

The identified benchmarking algorithms and KPI values could be used for evaluating the effectiveness 

of different data-driven software applications. 
 

• C.2  Automated fault detection, diagnostics and recommissioning. This activity focuses on applica-

tions that use building operational data and building models to identify faults and isolate their root 

causes in an automated way. This activity firstly reviews existing literature on data-driven fault detec-

tion and diagnostics (FDD), including its framework, methods, applications, and evaluation criteria 

(Section 3.2). A publicly available data repository for FDD development and evaluation, as well as a 

survey of market-available FDD software is summarized in Section 3.3.  A roadmap is also developed 

(Section 3.4) to guide industry stakeholders to understand the barriers and possible solutions for grow-

ing the adoption of FDD applications.  
 

• C.3  Building2Grid. This activity focuses on applications for orchestrating flexible demand from 

buildings in a way that can dampen the dynamics of the electricity grid. In collaboration with activity 

C1, activity C3 firstly reviews data-driven KPIs for the operational phase of buildings performing Build-

ing2Grid services and demand response (Section 4.2).  In order to develop, study, test and benchmark 

B2G services at scale, Activity C3 then collects open-access building energy flexibility datasets (in the 

form of time series data).  Section 4.3 describes the collected datasets and analyzes their application 

for B2G application development and testing.  At the moment, there is no standard way to assess B2G 

services. To address this limitation, activity C3 has developed an open-source toolbox in the form of 

a Python package for data-driven assessment of B2G services (Section 4.4).  An online platform is 

also developed for analysis of B2G services (Section 4.5).  
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2. Activity C1 

2.1 Introduction  

Benchmarking building operational performance is a pivotal step toward achieving energy-efficient, healthy, 

and comfortable buildings. However, it is challenging due to the complex nature of the multi-criteria assess-

ment involved. Ideally, buildings need to be both energy-efficient and provide comfort to occupants, while also 

being able to provide services to energy grids in the form of demand response (energy flexibility). KPIs can 

represent critical pieces of actionable information and help to evaluate and track if buildings meet their objec-

tives [1]. Therefore, the research team in activity C1 focused on investigating the benchmarking algorithms for 

building operational performance with specific emphasis on the KPIs. Given that a good KPI should be acces-

sible, quantifiable, and actionable [2], the work of activity C1 is structured in a way that addresses three key 

research questions (Figure 1): 

• Research question 1: What are the KPIs in existing buildings and energy-related literature?  

• Research question 2: What KPIs can be implemented within the existing infrastructure of current build-

ings?  

• Research question 3: Which KPIs are important to the building stakeholders? 

The Smart Readiness Indicator (SRI) is an assessment scheme in the EU, that assesses the readiness of 

building smart services. It includes three key functionalities: 1) Respond to the occupants’ needs, 2) Respond 

to the grid’s demand, and 3) Maintain building energy efficiency and operation. The KPI framework developed 

in activity C1 draws inspiration from the Smart Readiness Indicator framework [3] incorporating an additional 

category to evaluate the efficacy of smart technology (Figure 1).  

 

Figure 1 Research framework of Annex 81 Activity C1. 

 

Activity C1 first provides an overview of the KPIs found in the literature based on the proposed KPI framework 

(research question 1). These KPIs are then tested using real data from case study buildings (research question 

2). Finally, a survey is conducted to collect stakeholders’ opinions on building performance priorities (research 

question 3). 
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2.2 Literature review summary  

The KPIs identified from the literature can be categorized into four categories, namely, occupant-centric 

KPIs, interoperability KPIs, building energy saving and maintenance KPIs, and energy flexibility KPIs.  

2.2.1 Occupant-centric KPIs 

Occupants, as the primary beneficiaries of building services, wield considerable influence on the energy per-

formance of buildings. Simultaneously, building operations shape occupants’ comfort, productivity, and overall 

well-being. The increased focus on occupant health and comfort, exacerbated by the challenges posed by 

COVID-19, has magnified the importance of occupant-centric considerations. The review in this section cate-

gorizes occupant-centric KPIs into three main areas: those related to occupants' interaction with building sys-

tems, those based on indoor/outdoor environmental parameters, and those related to occupants' subjective 

feedback. Notably, the impracticality of measuring human-building interactions during the pre-occupancy 

phase necessitates the post-occupancy calculation of those KPIs. Although simulation-based assessments 

are an alternative, their reliance on simplified assumptions poses challenges for accurately quantifying real 

building performance from an occupant-centric perspective. 

Drawing from the building life cycle, stakeholders relevant to occupant-centric KPI mostly include building 

designers, occupants, building managers, and building owners. From these stakeholders' perspectives, the 

review identified 22 thermal KPIs, 11 air quality KPIs, 10 acoustic KPIs, and 17 visual-lighting KPIs, quantifying 

occupants’ comfort, health, productivity, and well-being [4]. The comfort-related KPIs are the most popular 

ones. Dry air temperature, CO2, sound level and illuminance are the most required input data for thermal, air 

quality, acoustic, and visual KPIs, respectively. Nevertheless, although KPI calculation formulas exist, chal-

lenges persist due to unclear definitions and a lack of specified sensor/meter data requirements, particularly 

on the whole building level. Further work is needed to specify the methodology to compute these occupant-

centric KPIs at a larger scale. 

2.2.2 Interoperability KPIs 

“Interoperability is the ability of two or more systems or components to exchange data and use information” 

[5]. Interoperability enables communication between different building systems and between building systems 

and the energy grids - a crucial aspect of smart buildings technology. The significance of interoperability testing 

in achieving seamless integration is widely acknowledged [6]. Despite its recognized importance, interopera-

bility testing lacks common specifications, and the absence of universally accepted quantifiable KPIs in build-

ing domain testing is notable. There are a few methodological approaches for interoperability assessment in 

the smart grid domain [6]. For example, Ford et al. [7] developed an i-Score methodology to assess the in-

teroperability of networks of systems. This methodology abstracts the systems as an architecture framework 

that describes how these systems work. Based on the architecture data, it employs graph optimization, and 

interoperability theory to offer a comprehensive assessment of interoperability. Van Amelsvoort et al. [8] then 

adapts this i-Score methodology for interoperability testing in the smart grid domain. However, the prevailing 

practice of devising adhoc interoperability testing procedures, without embracing well-structured methodolog-

ical approaches, can result in issues such as irreproducibility, subpar quality, prolonged development times, 

and increased costs [6]. Despite the evident importance of interoperability, progress in initiatives to enhance 

the current situation is sluggish, making it premature to operationalize within the framework of Annex 81.  

2.2.3 Transfer learning KPIs 

Transfer Learning (TL) is a powerful technique in Machine Learning (ML) where a model trained on a specific 

task (i.e., source task, or a source building) within a particular domain can be applied to a new task (i.e., target 

task, or a target building) that shares similarities with the original task, whether within the same domain or 
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across different domains. In the context of smart buildings technology, implementing a transfer learning strat-

egy can improve model performance, reduce the model computation time, and lower the cost of deploying 

smart algorithms. This could be for use cases such as load prediction, occupancy detection and activity recog-

nition, building dynamics, advanced control systems and fault detection and diagnosis. The traditional TL pro-

cess includes 1) identifying the best source domain (building) using similarity metrics; 2) applying TL solutions; 

3) assessing the TL performance.  

The different nature of data in the built environment has led to several methods to quantify building similarity 

based on specific applications. From the analysis of different applications in the built environment, two different 

approaches have been identified: semantic approach and data-based approach. The semantic approach uses 

features, metadata, and semantics to study the similarities between two buildings, while the data-based ap-

proach analyses the datasets available, trying to assess similarities between the source and the target da-

tasets, using both features and time series.  

The transfer learning solutions can be categorized into four types [9]: 1) Instance-based TL, where knowledge 

is transferred by utilizing data from similar environments or tasks to improve the target domain; 2) Feature-

representation TL, where knowledge is transferred through the learned representation of features; 3) Model-

parameter TL, where knowledge is transferred by sharing model parameters or their distributions between the 

source and target domains; 4) Relational-knowledge TL, where knowledge transfer focuses on the relation-

ships or interactions between entities in a dataset, specific to the relational structure of the data. 

The assessment of TL performance requires the definition of several metrics to assess building similarity (i.e., 

domain similarity) and machine learning performance, that can be employed to compute KPIs that quantify TL 

advantages in terms of performance, speed, data requirements and reliability. A number of KPIs have been 

introduced in [10] to quantify the performance of TL for building applications such as jumpstart, transfer ratio, 

asymptotic performance, time to threshold, performance with fixed number of epochs, performance sensitivity, 

necessary knowledge amount, and necessary knowledge quality. However, each KPI needs to be contextual-

ized in the framework of the TL application. A brief overview of metrics employed to quantify similarity between 

different buildings and of KPIs for TL performance, is provided below for each main building energy manage-

ment application. 

Load prediction: Adopting machine learning techniques for load prediction is still facing many challenges in 

real applications. In practice, limited data due to lack of monitoring infrastructure or time of data accumulation 

is a major barrier. Transfer learning is an effective approach to solve the data limitation problem in building 

load prediction and has attracted growing research interests. Several common KPIs were used to evaluate the 

performance of prediction models [11] and the consequent improvement when a TL framework is implemented. 

These KPIs include RMSE (Root Mean Square Error) improvement [12], CV-RMSE (Coefficient of Variation of 

Root Mean Square Error)  improvement [13] and MAPE (Mean Absolute Percentage Error) improvement [14]. 

Moreover, various techniques have been used to assess building similarity, as Dynamic Time Warping (DTW) 

[15], Similarity Measurement Index [14], Maximum Mean Discrepancy (MMD) [16] and Mahalanobis Distance 

[17]. 

Occupancy detection and activity recognition: In the framework of occupancy detection, transfer learning 

could be useful in addressing some of the challenges faced when developing occupancy detection models. 

These challenges border on sensing infrastructure limitations [18], labeled data collection [19], model quality 

as well as generalization [20], and model explainability [21]. The evaluation metrics used to quantify the occu-

pancy detection model performance are distinguished by the modeling problem under study. The works con-

cerned with occupancy count prediction utilized metrics such as Mean Squared Error (MSE), Mean Absolute 

Error (MAE), Root Mean Squared Error (RMSE), Normalized Root Mean Squared Error (NRMSE) and Mean 

Bias Error (MBE) to infer their model quality [22]. On the other hand, works that focused on occupancy pres-

ence detection (binary classification problem) used either accuracy, F1-score or both metrics to report model 

performance [23]. To quantify the performance of the TL improvement in activity recognition, the literature 
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review revealed that the most commonly used metrics are Recall, Precision, and F1-Score [24]. An advantage 

of these metrics is that they are not affected by the distribution of the different classes and usually provide 

more accurate values for frequently occurring activities like sleep. Other performance metrics for binary clas-

sification for occupancy detection are Balanced Accuracy, Matthews Correlation Coefficient, Area under the 

Receiver Operating Characteristic Curve,  and manual inspection of the confusion matrix [25]. 

Building dynamics: The application of transfer learning for building thermal dynamic models has proven to 

speed up the training process of the data-driven models in data-scarcity conditions and increase their accuracy 

and performances. The main machine learning metrics used to quantify the performance of building dynamics 

applications are RMSE, MAE and MAPE [9, 26]. These metrics are employed to quantify the effectiveness of 

TL on building thermal dynamic performances by employing KPIs as performance improvement ratio (repre-

senting the percentage improvement of using TL over classical machine learning), performance with a fixed 

number of epochs (comparing the performance of TL and no-TL applications with a fixed number of epochs, 

where the performance difference with 1 epoch represents the jumpstart) and time to the threshold (represent-

ing the time in terms of training epochs needed to reach a certain performance). 

Control systems: The implementation of TL in building control can offer numerous advantages. For instance, 

it simplifies the transfer of information between advanced controllers, streamlining the application of algorithms 

that are often customized for specific control problems. Additionally, using TL scaling the implementation of 

such algorithms in buildings with limited historical data [26] could significantly reduce the training time required 

for data-driven control strategies to achieve near-optimal control policies. Several metrics to measure the per-

formance of TL for advanced controllers are established according to the objective functions. In this framework, 

controller performances are mainly related to energy consumption or cost [27] and comfort conditions [28]. 

Energy consumption or energy cost refers to the energy/cost reduction allowed by the implementation of an 

advanced pre-trained controller transferred from a source building compared to a baseline controller (rule-

based controller or advanced controller trained from scratch). Moreover, from the analysis of the literature 

reviews, the main KPIs used to quantify the effectiveness of TL for building control are time to threshold, 

performance with a fixed number of epochs [27], time to reach the performance of a controller not transferred 

and trained from scratch (representing the time in terms of training epochs needed to reach certain perfor-

mance) [29]. The definition of robust metrics and KPIs to quantify the similarity between source and target 

buildings is one of the main challenges related to the application of TL for building control applications. 

Fault Detection and Diagnosis (FDD): The acquisition of comprehensive datasets fully representative of the 

normal and faulty conditions of a system is essential to pursue a reliable data-driven approach to FDD but at 

the same time is laborious, time-consuming, and costly. In addition, a significant discrepancy between training 

and testing datasets due to load change and different operation modes can seriously affect their performance 

in promptly detecting and diagnosing faults during system operation [30]. Researchers worldwide identified 

transfer learning as a valuable approach that can be employed to overcome these challenges and to enhance 

the applicability of data-driven FDD processes. More discussions specifically on FDD are provided in Section 

3.2.  According to [31], [16], and [32], the criteria that are proven to be also successful in FDD tasks, to assess 

discrepancy between distribution similarity of transferable features, include maximum mean discrepancy 

(MMD), Kullback–Leibler divergence, multiple kernels MMD (MK-MMD), Jensen–Shannon (JS) divergence, 

Correlation Alignment (CORAL), Euclidean distance, Wasserstein Distances (WD), OT-embedded joint distri-

bution similarity measure (OT-JDSM). Given that the diagnosis problem in FDD is mostly defined as a classi-

fication task, the employed KPIs to evaluate the beneficial effect of TL are related to Accuracy, Precision, 

Recall and F-measure improvement degree as reported in [33].  

2.2.4 Building energy saving and maintenance KPIs 

Energy performance indicators are normally integrated into rating and certification systems based on building 

energy codes and standards. Li et al. [34] summarized the most common energy performance indicators at 
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the building level and introduced a set of system-level KPIs that include four major end-use systems and their 

eleven subsystems.  

Building maintenance encompasses a range of activities aimed at preserving and repairing the functionality, 

safety, and aesthetics of a building and its components. Maintenance costs can account for up to 65% of 

annual facility management costs [35]. [36] introduces three types of maintenance: Improvement maintenance, 

predictive maintenance, and corrective maintenance. Based on these maintenance types, the performed re-

view has comprehensively listed the maintenance KPIs incorporated in the [37]. Maintenance KPIs are classi-

fied into eight groups: physical asset management (20 KPIs), information communication technologies (20 

KPIs), health safety environments (22 KPIs), maintenance management (22 KPIs), people competence (20 

KPIs), maintenance engineering (19 KPIs), organization and support (30 KPIs), and administration and supply 

(29 KPIs). In addition, activity C2 specifically reviewed the maintenance KPIs related to Fault Detection and 

Diagnosis. The review [38] classifies the FDD KPIs into three categories: general evaluation metrics for FDD 

applications (8 KPIs), evaluation metrics for data-driven classification problems (5 KPIs), and statistical signif-

icance tests that assist the evaluation of classification problems (5 tests).  

2.2.5 Energy flexibility KPIs 

A recent literature review in Activity C3 (Section 4.2) identified 29 generic KPIs and 48 data-driven KPIs for 

assessing demand response and building energy flexibility [39]. These KPIs can be categorized into 12 distinct 

groups: power peak shedding, energy/average power load shedding, peak power/energy rebound, valley fill-

ing, load shifting, demand profile reshaping, energy storage capability, demand response energy efficiency, 

demand response costs/savings, demand response emission/environmental impact, grid interaction, and im-

pact on indoor environment quality. These KPIs usually have low complexity, but most of them (81%) require 

a baseline (scenario without demand response) to be calculated. The most popular of these KPIs are related 

to the energy efficiency of a demand response action, the load shifting capacity (typically from high-price peri-

ods to low-price periods), and the peak power shedding. However, the popularity of these KPIs in the research 

community does not necessarily reflect their applicability and usefulness for the industry and other demand 

response stakeholders. For instance, Johra et al. [11] showed that there is a clear mismatch between the data 

that is typically available from current BMS datasets and the data requirements to compute these KPIs. In 

addition, a discussion with the different stakeholders is necessary to identify what assessment method is the 

most appropriate for their specific use. 

2.2.6 Summary 

In summary, the literature overview has collected 60 occupant-centric KPIs, 40 KPIs for transfer learning, 274 

KPIs for building energy and maintenance, and 77 KPIs for building-grid interaction, resulting in a total of 451 

KPIs (Figure 2). 
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Figure 2 Overview of the collected KPIs. 

2.3 Case study 

This section presents a comprehensive evaluation of previously gathered KPIs across five office buildings, 

with four located in the Netherlands and one in Switzerland. The analysis uses historical BMS data from 2022 

to ascertain the feasibility of computing various KPIs, focusing particularly on occupant-centric and energy 

flexibility metrics. The findings underscore challenges associated with data availability for KPI computations. 

Thermal comfort KPIs are found to be the most readily calculable among occupant-centric KPIs, while those 

related to building lighting and acoustics present significant challenges if using BMS data. Similarly, within 

energy flexibility KPIs, only those dependent on total energy demand are generally calculable. On average, 

only approximately one-fourth of the collected KPIs can be reliably calculated for the case study buildings 

(Figure 3). 
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Figure 3 Percentage of the computable KPIs using historical BMS data of case buildings. 

Furthermore, a detailed assessment of six KPIs, namely Predicted Mean Vote (PMV), Predictive Percentage 

of Dissatisfaction (PPD), Percentage of CO2 exceeding the threshold (PCO2), Energy Consumption per square 

meter (EC), Flexibility Factor (FF), and Load Factor (LF), was conducted to gauge the annual performance of 

the case study buildings. While these KPIs can be computed, their definitions lack consideration for the com-

plexity of real-world building scenarios, introducing ambiguity and limiting reliability in calculations. For in-

stance, the PMV index relies on indoor air temperature as an input parameter. In the case study buildings, one 

building has forty indoor air temperature sensors distributed in various rooms, while another only has one 

indoor air temperature sensor. This variation in the number and placement of indoor air temperature sensors 

can lead to bias in the PMV calculation when comparing the thermal performance of two buildings. Several 

key considerations are highlighted:  

• Input data quality: KPI definition should specify input data quality, such as sensor accuracy, sampling 

frequency, maximum amount of missing data points, and outlier management. 

• Spatial factors: KPIs should account for the spatial distribution of sensors to ensure a representative 

measurement of the entire space. 

• Temporal factors: KPIs should describe the time resolution for calculations, ranging from annual to 

sub-hourly intervals. 

• Data aggregation factor: The data aggregation factor should be addressed, indicating how data is 

aggregated in the temporal dimension, from lower-level (e.g., minute-level sensor data) to higher-level 

intervals for KPI calculations and in the spatial dimension, how to aggregate sensors over large build-

ings with distinct thermal zones. Different aggregation methods may affect the calculations.  

 

Analysis of collected data indicates that spatial factors are the most influential for PMV, PPD, and PCO2 cal-

culations, while temporal factors and data aggregation factors play a more critical role in FF and LF computa-

tions. Importantly, the significance of these considerations depends on the specific KPIs, building characteris-

tics, performance goals, sensor technologies, and their interplay. This again underscores the need for further 

research to standardize KPIs, ensuring a reliable benchmarking process for assessing building performance 

in practical applications. 
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2.4 Stakeholder survey on KPI 

Numerous KPIs could be generated and calculated in the previous sections; however, not all of them are 

important to the stakeholders. To address this, a survey was conducted, seeking input from stakeholders on 

essential aspects of building operational performance. The survey was designed based on the proposed KPI 

framework, incorporating three building performance goals: 1) to improve buildings’ energy saving and opera-

tion, e.g., energy efficiency, operational cost, environmental impact, and maintenance. 2) to satisfy occupants’ 

needs, e.g., comfort, health, well-being, and convenience. 3) to satisfy the grid’s requirements and provide 

building-to-grid services, e.g., grid stability and demand response. Each general goal was further subdivided 

into four sub-performance/technical aspects. The survey employed the Analytic Hierarchy Process (AHP) to 

gauge stakeholders' opinions on the relative importance of two performance aspects and to calculate their 

corresponding weights. 

A total of 137 stakeholders received the questionnaire, with 65 stakeholders (47.4% response rate, predomi-

nantly building managers) completing the survey. The results indicate that stakeholders typically prioritize oc-

cupants' needs the most, followed by the building's energy efficiency and operation, and exhibit the least con-

cern for the grid’s requirements. Within the occupants' needs category, occupant health emerged as the most 

important aspect and sub-aspects like mitigating respiratory disease transmission, followed by comfort. For 

building operations, stakeholders considered the downtime of the building system as the most critical consid-

eration, while operational cost ranked as the least important. In contrast, for building energy flexibility, all tech-

nical aspects held similar importance, encompassing power peak shedding, energy/average power load shed-

ding, peak power/energy rebound, valley filling, load shifting, demand profile reshaping, and energy storage 

capability. However, the study also unearthed notable variations in priority among individual stakeholders. 

Specifically, only 52% ranked occupants' needs highest, while a smaller fraction (14%) deemed the grid's 

requirements their foremost concern (Figure 4). This may be caused by many factors, such as stakeholder 

type, the building functions, policy, and country. 

 

Figure 4 Percentage of stakeholders who prioritize one building performance aspect.  
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3. Activity C2  

3.1 Introduction 

With the wide adoption of building management systems, and the advancement of data, sensing, and machine 

learning techniques, data-driven FDD for building heating, ventilation, and air conditioning (HVAC) systems 

has gained increasing attention. Despite the rapid development of machine learning techniques, the market is 

slowly adopting data-driven FDD as an alternative or complement to the traditional rule-based approaches. In 

this activity, data-driven FDD is defined as those that are trained or built from data using machine learning or 

multivariate statistical analysis methods [40] (rather than if/then logical rules and decision trees).  

Similar to Activity C1, a literature review (Section 3.2) was firstly conducted to understand the state-of-the-art 

of data-driven FDD, including its general framework, reported methods for all processes within the framework, 

building components that data-driven FDD methods have been applied to, sources of data used in developing 

these FDD methods, how data-driven FDD methods are evaluated, and reported challenges for further devel-

opment and market adoption of data-driven FDD.  

Taking advantage of several other on-going activities of the participants, such as that at Lawrence Berkeley 

National Laboratory, this activity summarized an existing FDD data repository and software (Section 3.3).  It is 

noted that not all FDD software reported in this activity is data-driven FDD.  But this summary provides a 

comprehensive understanding of the market availability of FDD tools.   

Based on the summarized literature, data repository, and existing FDD software tools, participants of this ac-

tivity developed a roadmap (Section 3.4), aiming to guide industry stakeholders through the ecosystem of 

Automated Fault Detection and Diagnosis (AFDD). 

3.2 Literature review summary 

Based on the above definition of data-driven FDD, our examination of the literature covered the process of 

data-driven FDD, the systems studied, and the evaluation metrics employed. The data-driven FDD process 

encompasses several steps, including data collection, cleansing, preprocessing, baseline establishment, fault 

detection, diagnostics, and potential fault prognostics, as illustrated in Figure 5.  

Several algorithmic methods were identified as being used in the FDD process, such as Clustering, Decision 

Tree (DT), Principal Component Analysis (PCA), Support Vector Machine (SVM), Support Vector Regression 

(SVR), Neural Networks (NN), Bayesian Networks (BN), Hidden Markov Models (HMM), Generative Adver-

sarial Networks (GAN), and Ensemble Learning. While various data-driven methods have been investigated, 

there are few studies that compare the performance between methods in different categories (e.g., expert rule-

based vs data-driven, supervised vs unsupervised).  

Our review also found that data-driven FDD methods have been applied to various HVAC components and 

subsystems to detect and diagnose a range of faults. For large buildings, the focus has often been on Air 

Handling Unit – Variable Air Volume (AHU-VAV) systems, fan coil units (FCU), chillers, and boilers. The liter-

ature reported that 35% of the studies were dedicated to secondary AHU-VAV systems, with chillers following 

closely at 32% [38]. The AHU-VAV secondary systems, crucial for heating and cooling multiple zones, were 

often presented with actuator and equipment faults such as those in dampers, cooling/heating coil valves, fans, 

and air ducts [38].  
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Figure 5 A General Data-driven FDD Process. 

Chiller faults stand out as the most extensively studied in the context of data-driven methods in Vapor Com-

pression Cycle (VCC) systems. These chiller faults are bifurcated into two categories: local faults, which in-

clude faults like condenser fouling, reduced condenser water flow, non-condensable in the refrigerant, and 

reduced evaporator water flow, and system faults such as, refrigerant leakage/ undercharge, refrigerant over-

charge, and excess oil.  

Additionally, a significant focus, accounting for 17% of the reviewed studies, has been directed towards whole-

building level faults. The intricacies at this level arise from a confluence of factors such as building dynamics, 

external climatic conditions, system operating schedules and occupant comfort requirements. These collec-

tively give rise to a myriad of building energy consumption patterns, which are not always straightforward to 

discern. 

As for the sources of data used in developing these FDD methods, the literature revealed a mix of simulation 

data, laboratory experiments, and field measurements from real buildings. Among the papers reviewed, 48% 

used lab experiment data, 20% used simulation data, and 32% used real building data. The majority of whole 

building applications rely on real field measurement data while system-level VRF, AHU and Chiller applications 

mainly rely on laboratory data. 
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The evaluation of data-driven FDD is crucial, and the literature presents a gamut of dedicated metrics to 

achieve this. Broadly, these metrics fall into three categories: 

• General Evaluation Metrics: These encompass fundamental measures like true positive rate 

(TPR), false negative rate (FNR), and correct diagnosis rate (CDR). 

• Classification Problem Metrics: Tailored for data-driven classification problems, confusion matrix, 

accuracy of correct predictions, F-measure (or F-score), Receiver Operator Characteristic (ROC), 

and Area Under the Curve (AUC).  

• Statistical Significance Tests: Useful for comparing different classification models in FDD, com-

mon tests include the t-test, McNemar's Test, and the Friedman Test. 

Based on the findings from our review, we have identified some of the ongoing efforts and challenges to further 

the development and market adoption of data-driven FDD, as follows:  

• Real-building deployment 

• Performance Evaluation, Benchmarking, and Fault Impact Analysis 

• Scalability and Transferability 

• Interpretability 

• Cyber Security and Data Privacy 

• User Experience 

Details on these challenges are presented in [38]. 

In summarizing this review, we aspire it to provide insights and directions for practitioners and researchers to 

develop the next generation data-driven FDD products. More details about the review are provided in [40]. 

3.3 Data repository and software summary   

3.3.1 LBNL FDD data repository 

In the past thirty years, the development of various FDD solutions for buildings has attracted significant atten-

tion around the world. However, a persistent challenge to ongoing development advances is a lack of common 

datasets and algorithm test methods, which are essential to support the vetting of new algorithms. In the past, 

very few publicly available, labeled FDD datasets have been published. Most research used research-project 

specific data, which were restricted by NDAs or other data sharing restrictions. Some early research produced 

a handful of FDD datasets, which are publicly available and have been widely used to develop FDD technolo-

gies. However, those datasets are limited to a few types of HVAC equipment. The fault types and faulty data 

range are very small. For example, the ASHRAE RP-1043 project included 8 fault types for chillers [41]. The 

ASHRAE RP-1312 project included 13 faults for air handling units (AHU) [42]. For both datasets, each fault 

type contains faulty data ranging from one day to a few days within one typical operational season. 

To bridge this gap, researchers at Lawrence Berkeley National Laboratory developed the largest ever HVAC 

FDD dataset. It covers the most common HVAC systems and configurations in commercial buildings, across 

a range of climates, fault types, and fault severities. The time series points that are contained in the dataset 

include measurements that are commonly encountered in existing buildings as well as some that are less 

typical. Simulation tools, experimental test facilities, and in-situ field operation were used to generate the data. 

The FDD dataset includes 7 HVAC systems, including the single duct AHU system, the packaged rooftop unit 

(RTU), the dual duct AHU system, the fan coil unit (FCU) system, the fan power unit (FPU), the boiler plant, 

and the chiller plant. Data for most systems spans faulty operation in one year. The total fault cases number 

257 (i.e., faults at different severity levels), with an associated 8 billion data points. 

https://www.zotero.org/google-docs/?YEhK5L
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The developed FDD datasets and associated inventories are fully open to the public with no cost, and can be 

downloaded from the website: https://faultdetection.lbl.gov/.  Granderson et al. documented the development 

of the FDD data set [43, 44]. In addition, [45] presents a systematic framework for evaluating the performance 

of FDD algorithms. 

3.3.2  FDD software tool repository 

In the U.S., there is a thriving ecosystem of commercially available FDD software tools that are increasingly 

being adopted in the market. FDD software tools employ operational data collected from building BMS sys-

tems, sensors, and meters, to automatically detect equipment and control problems, or degrading performance 

in an HVAC system, and to diagnose potential root causes [46]. 

FDD software comes in different flavors. It can be hosted in cloud-based or on-premise servers external to the 

BMS, it can be run from desktop applications, or embedded in equipment [47]. In addition, building manage-

ment systems often offer collections of rules that are packaged and sold as FDD libraries. FDD software that 

integrates with the BMS has been documented to save on average 9% in energy use, with two-year paybacks 

in portfolio implementations [46]. A few examples are provided in Table 1 - this list is not intended to be com-

prehensive1. Several HVAC FDD tools and corresponding vendor information are provided in Table 1. 

Table 1 Examples of commercially available AFDD software tools 

No Company FDD software name Website 

1 Clockworks Analytics Clockworks https://clockworksanalytics.com/ 

2 CopperTree Analytics Kaizen https://www.coppertreeanalytics.com/ 

3 Ezenics Ezenics https://ezenics.com/ 

4 Cimetrics Analytika https://cimetrics.com/ 

5 SkyFoundry SkySpark https://skyfoundry.com/ 

6 
Prostar Energy Solu-
tions 

eIQ Platform 
https://prostarenergy.com/ 

7 Iconics Facility AnalytiX https://iconics.com/ 

8 BuildingLogix 
BuildingLogix Data Ex-
change  

https://buildinglogix.net/ 

9 Lean FM Technologies LEANFM  RESCRIPTV https://leanfmtech.com/ 

10 KODE Labs KODE https://kodelabs.com/ 

11 HITACHI exiida 
https://www.hitachi-gls.co.jp/products/exi-
ida/monitoring/ 

 

1 Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the authors, by the United States Government 
or any agency thereof, or by the Regents of the University of California. 

https://faultdetection.lbl.gov/
https://faultdetection.lbl.gov/
https://www.zotero.org/google-docs/?04zrzk


 

 

 
26/46 

12 azbil BiG EYES 
https://aa-industrial.azbil.com/ja/prod-
ucts/monitoring-control-system-soft-
ware/monitoring-operation-support/big-eyes 

13 CIM PEAK https://www.cim.io/ 

14 Bueno 
Smart Building Analytics 
platform 

https://www.buenosystems.com.au/ 

15 Switch BMS 
Switch OpX - Operational 
Excellence 

https://www.switchBMS.com/ 

16 Soundsensing Soundsensing https://www.soundsensing.no/ 

17 Ento Ento AI Analytics https://www.ento.ai/da/ 

18 Utilifeed Fault Detection Utilifeed https://www.utilifeed.com/ 

19 Climify 
Human-Centered Building 
Monitoring and Control 

https://climify.com/ 

3.4  Road map summary  

This roadmap aims to guide industry stakeholders through the ecosystem of AFDD and facilitate increased 

adoption and deployment of AFDD in buildings and their systems - by addressing identified barriers and provid-

ing possible solutions for building owners, operators, facility managers, and technology providers. The entries 

to this AFDD roadmap originate from the latest review and survey studies on the topic [40, 48, 49], and inputs 

from the different participants of the activity C2. 

Figure 6 illustrates the ecosystem of the implementation and operation of AFDD solutions in buildings. It in-

cludes: 1) AFDD development and implementation, 2) Running AFDD solutions in buildings, 3) Data manage-

ment, and 4) Fault analysis and handling. 

The mapping of the different barriers, stakeholders and potential solutions are categorized in Table 2 to Table 

5 below, each according to one of the four sub-domains of the AFDD ecosystem defined in Figure 6. Each 

table divides the proposed solutions by each of five categories of identified barriers2 that the proposed solution 

address.  The identified barriers for the tables are as follows: 

● Economic and business: Costs and benefits for end-users and/or business limitations. 

● Technological and technical: Technical knowledge, interoperability, infrastructure and/or data. 

● User-related: User experience, interface and/or misunderstanding. 

● Regulatory: Policies, GDPR and/or cybersecurity. 

● Social and societal: Cultural, community and stakeholders, benefits for society and/or environmental 

sustainability. 

 

 

2 Based on: Andersen et al. https://doi.org/10.1016/j.enbuild.2023.113801 

https://www.soundsensing.no/
https://www.ento.ai/da/
https://www.utilifeed.com/
https://climify.com/
https://doi.org/10.1016/j.enbuild.2023.113801
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Figure 6 Mapping of the AFDD ecosystem: implementation and operation of AFDD solutions. 

Also, in the Tables below, the term ‘stakeholder’ refers to a person or group with an interest in a topic that can 

affect or be affected by its operations and performance. The identified stakeholders are: 

● Building Technology industry (AFDD companies + BMS vendors). The key issues affecting this 

category typically relate to the implementation of data driven AFDD in buildings, and are mostly related 

to interoperability and market related issues and adoption. Legacy BMS systems and proprietary com-

munication protocols, in existing buildings, challenge the implementation of new AFDD products.  This 

makes integration not only technically difficult but requires a significant investment that may not match 

the customer’s expectations. 

● Building owners. Such stakeholders might be required to make large investments to upgrade or ret-

rofit their existing equipment. Implementing advanced AFDD tools may expose the building systems 

and data to cybersecurity issues (industrial clients may be the most concerned). Without a broadly 

accepted methodology to assess the potential performance of AFDD tools in operation, the calculation 

of KPIs like return on investment (ROI) or payback time may be troublesome and it could be difficult 

to estimate savings potential. 

● End users (maintenance staff). Lack of interpretability or transparency behind the results of AFDD 

tools may lead to difficulty in accepting results (fault root causes, diagnosis, actions to be taken) from 

the end user perspective. They may be interested in fully understanding how the tool calculates a 

certain result or prioritizes the intervention on a certain fault. Along with trust issues and the learning 

curve required to understand and use such tools, the end users may be reluctant to change day-to-

day operations in favor of new procedures. 
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Table 2 AFDD development and implementation 

Barrier 
Category 

Potential Barriers Stakeholders 
Existing 

Resources 
New Possible 

Solutions 

Economic 
and business 

AFDD solutions can 
be too expensive, 
particularly when 
there are legacy 
systems leading to 
poor data access  

AFDD 
companies, 
building 
owners 

None identified Information tools that 
help assess the return of 
investment on AFDD; 
and more clarity on 
AFDD costs 

Technological 
and technical 

Integration with 
underlying BMS is 
difficult due to lack of 
semantic information 
(lack of semantic 
interoperability)  

BMS 
companies, 
AFDD 
companies, 
maintenance 
staff 

There exists some 
but limited AFDD-
related ontologies 

Development and 
adoption of an ontology 
and semantic principles 
for the development of 
AFDD solutions 

Quality of BMS data is 
low: uncertain, 
missing data and a 
lack of labeled ground 
truth data 

AFDD 
companies, 
building 
owners, BMS 
companies 

Project Haystack 
and Xeto, ASHRAE 
223p, Brick; 
semantic 
sufficiency; open 
source library online 
(but no centralized 
way to share) 

Foster more open-
source tools, datasets, 
models and 
benchmarking; FAIR 
principles; development 
of guidelines to indicate 
how much sensing is 
required. 

Scalability and 
transferability (model), 
portability (service); 
data schema; 
similarity 

BMS 
companies, 
AFDD 
companies, 
researchers 

ASHRAE 223p, 
Brick; semantic 
sufficiency; open 
source library online 
(but no centralized 
way to share) 

Use an ontology; open 
source portable 
applications; transfer 
learning; measure the 
accuracy when a 
building model is 
transferred 

User-related Owner does not 
understand the 
economic/operational 
benefits 

Building 
owners, 
AFDD 
companies 

Studies on energy 
and cost reduction 
with AFDD; DOE 
report 

Assessment of the 
return of investment on 
AFDD; training people to 
understand the value of 
data 

Industry generally has 
low awareness of 
AFDD (conservative 
for innovations due to 
uncertainties) 

BMS 
companies, 
building 
owners, 
maintenance 
staff 

Research on AFDD 
benefits; ROI 
analysis 

Demonstrators; training 
people to understand the 
value of data 

Regulatory Lack of 
standardization; data 
privacy and security; 
cost implications; 
technical; complexity 
and expertise 

BMS 
companies, 
AFDD 
companies, 
researchers 

Incentives and 
policies; building 
codes and 
regulations 

Adoption of smart 
readiness indicator in 
EU 



 

 

 
29/46 

Social and 
societal 

Public resistance due 
to perceived risks; 
impact on 
employment in 
traditional 
maintenance roles; 
societal undervaluing 
of long-term 
sustainability. 

General 
public, labor 
unions, 
educational 
institutions 

Public forums and 
discussions; social 
studies on 
technology adoption 

Public engagement 
initiatives; collaboration 
with educational 
institutions to integrate 
AFDD technologies into 
curricula; campaigns 
that highlight 
environmental and 
economic benefits. 

Table 3 Running AFDD solutions in Building. 

Barrier 
Category 

Potential 
Barriers 

Stakeholders 
Existing 

Resources 
New Possible Solutions 

Economic 
and business 

Customers are 
reluctant to pay 
regular service 
fees for AFDD 
and cloud-based 
solutions, they 
prefer a one-
time fee.  

Maintenance staff, 
building owners 

None identified Development of demonstrator 
projects to showcase benefits; 
detailed business cases 
illustrating long-term savings; 
transparency in pricing and the 
breakdown of service fees; 
payment systems offering 
various levels of service. 

Technological 
and technical 

Integration with 
existing 
systems; 
handling large 
volumes of data; 
ensuring 
accuracy and 
relevance of 
alarms. 

BMS companies, 
AFDD companies 

None identified Enhanced interoperability 
standards; development of 
advanced predictive algorithms 
to reduce false positives; 
improved user interfaces for 
easier interaction with AFDD 
systems; cloud solutions with 
scalable data management. 

User-related Cooperation with 
maintenance 
staff 

BMS companies, 
AFDD companies, 
maintenance staff 

Commissionin
g training 
processes; 
existing 
educational 
materials from 
tool 
developers. 

More focused, hands-on 
training sessions; simplification 
of AFDD interfaces; regular 
update workshops; creation of 
easy-to-follow maintenance 
protocols; incentivizing staff 
through certification in AFDD 
technology. 

How to better 
guide the staff to 
do maintenance, 
how to make 
them understand 
FDD tool outputs 
(e.g., too many 
alarms)  

AFDD companies, 
maintenance staff 

Training 
(commissionin
g training 
process, tool 
developer to 
educate) 

Focused training of 
maintenance staff on AFDD 
solutions provided by AFDD 
companies on specific BMS; 
develop better UI to support 
decision making to correct 
faults 
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Regulatory Compliance with 
data regulations; 
industry 
standards for 
AFDD 
implementation. 

AFDD companies, 
maintenance staff, 
government 
regulatory bodies, 
industry standard 
organizations, 
legal 
departments. 

General data 
protection 
regulations; 
existing 
building and 
industry 
standards. 

Engagement with regulatory 
bodies to develop AFDD-
specific standards; workshops 
and seminars on regulatory 
compliance for AFDD vendors 
and users; development of 
compliance toolkits tailored to 
AFDD. 

Social and 
societal 

Public 
skepticism about 
BMS in building 
management; 
concerns over 
data privacy; 
impact on 
employment for 
traditional roles. 

Building owners, 
General public 

None 
identified. 

Public awareness campaigns 
about the benefits of AFDD; 
engagement with privacy 
advocates to ensure robust 
data protection; training 
programs aimed at upskilling 
traditional roles into AFDD-
related positions; community 
outreach programs to educate 
on sustainability benefits of 
AFDD. 

Table 4 Data Management. 

Barrier 
Category 

Potential 
Barriers 

Stakeholders 
Existing 

Resources 
New Possible Solutions 

Economic 
and business 

High costs 
associated with 
data storage and 
processing; 
economic 
feasibility of 
scaling data 
infrastructure; ROI 
uncertainty. 

Building 
owners, AFDD 
companies, 
investors, IT 
service 
providers. 

Limited financial 
analysis on data 
management for 
AFDD; existing data 
storage solutions. 

Cost-benefit analysis of 
data infrastructure; 
development of scalable 
cloud storage solutions to 
reduce upfront costs; 
subscription-based data 
management services; 
financial models 
highlighting long-term 
savings from efficient data 
management. 

Technological 
and technical 

Many sensors 
have silo-based 
data extraction. 
Might need 
additional 
programming and 
knowledge for a 
continuous data 
stream. 

BMS 
companies, 
AFDD 
companies, 
maintenance 
staff 

From a software 
perspective, this is 
easy. However, the 
associated cost 
might be a barrier. 
In particular, indoor 
environmental 
sensors sometimes 
have individual 
cloud services. 
Having multiple 
cloud services is 
difficult to manage 
costs. 

Development of universal 
data adapters or 
middleware to integrate 
disparate systems; 
investment in training for IT 
staff on data integration; 
industry-wide standards for 
sensor data outputs; 
cost/benefit study to justify 
integration investments. 



 

 

 
31/46 

User-related Lack of technical 
expertise in 
handling and 
interpreting large 
datasets; 
resistance to new 
systems due to 
complexity. 

Facility 
managers, 
maintenance 
staff, building 
owners, AFDD 
companies. 

Basic training 
materials; some 
AFDD interfaces 
designed for non-
expert use. 

Comprehensive training 
programs on data 
management; development 
of more intuitive, user-
friendly AFDD dashboards; 
ongoing support and 
troubleshooting services; 
community forums for 
sharing best practices and 
troubleshooting. 

Regulatory GDPR / privacy 
for data sharing 
can be a limitation 
to access and use 
data for AFDD, 
especially if the 
costumer does 
not see the 
benefits of sharing 
their data. 

BMS 
companies, 
AFDD 
companies 

General 
understanding and 
compliance 
frameworks for 
GDPR. 

Detailed explanations and 
transparent policies on data 
usage; secure data 
handling and storage 
practices; development of 
consent protocols that 
clearly benefit users; 
workshops and seminars on 
the benefits of data sharing 
under regulatory 
compliance. 

Social and 
societal 

Public concerns 
over surveillance 
and data misuse; 
social resistance 
to perceived over-
reliance on 
technology. 

General public Public forums; 
existing laws and 
regulations on data 
privacy. 

Public engagement 
initiatives to discuss and 
address data privacy 
concerns; collaborations 
with privacy companies to 
build trust; educational 
campaigns highlighting the 
environmental and 
operational benefits of 
AFDD; robust 
anonymization techniques 
to protect individual privacy 
while using data for AFDD. 

Table 5 Fault analysis and handling. 

Barrier 
Category 

Potential Barriers Stakeholders 
Existing 

Resources 
New Possible Solutions 

Economic 
and business 

Unclear business models 
for fault handling and 
analysis. 

Maintenance 
team, building 
owner 

Engaging 
management 
to reduce 
energy use 
and improve 
indoor 
environment 
in buildings.  

Development of clear 
business models outlining 
ROI for fault analysis; 
performance-based 
contracting; incentive 
models for energy savings 
achieved through effective 
fault management. 

Technological 
and technical 

Each building is different; 
diversities of control 
loops; how to measure 
similarities; how to 
compare performance of 
buildings 

AFDD 
companies, 
maintenance 
team, building 
owner 

LBNL 
benchmarking 
data; 
simulation 

New KPIs; need standard 
way to organize data (e.g., 
Energy Star); compare 
energy performance with 
NABERS energy rating 
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Difficulty of creating 
baselines, label data; 
taxonomy of the fault; 
method to identify 
severity of the fault is not 
mature; difference 
between simulation (lack 
detail) and real-world; 
how to measure the 
impact 

Detail 
modeling 
(Modelica); 
ontology-
developers; 
researchers 

ASHRAE 
223p Brick 

 

Interpretability; black 
box; deep learning 
structure; system 
complexity (even rule-
based is difficult) 

 LIME, SHAP; 
LLM, 
generative AI 

Explainable AI; hybrid 
model that combines both 
physics and data-driven 
approach.  

User-related Maintenance staff try to 
hide their faults 

AFDD 
companies, 
maintenance 
team, building 
owner 

Collecting the 
control 
signals, 
sequences 

Enhanced training 
programs focused on the 
benefits and operation of 
AFDD tools; development of 
fault prioritization systems 
to manage alarm frequency; 
user-friendly interfaces and 
dashboard customizations 
to aid maintenance staff in 
managing and responding 
to alerts more effectively. 

How to understand FDD 
tools to better support 
the maintenance staff 
(e.g., too many alarms), 
how to better guide the 
staff to do maintenance 

AFDD 
companies, 
maintenance 
team, building 
owner 

Basic training 
of BMS, 
control 
systems and 
sequences. 

Regulatory Lack of specific 
regulations or standards 
on AFDD in buildings. 

Regulatory 
bodies, AFDD 
companies, 
building 
owners. 

General 
building and 
safety 
regulations. 

Creation of specific 
standards and regulations 
for AFDD systems; 
integration of AFDD 
requirements into existing 
building codes and 
standards; workshops and 
seminars to engage 
regulators and stakeholders 
in establishing these 
regulations. 

Social and 
societal 

Public skepticism 
towards automated 
systems and potential 
job displacement 
concerns. 

General 
public, 
educational 
institutions. 

Public forums 
and debates 
on BMS and 
employment. 

Public awareness 
campaigns that highlight the 
environmental and 
economic benefits of AFDD; 
educational programs that 
provide training for new 
technological roles 
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4. Activity C3: Building-to-Grid Applica-

tions 

4.1  Introduction 

To address the environmental and sustainability challenges in the energy sector, and to enable the transition 

from fossil fuels to fluctuating renewable energy sources (RES), a drastic change is required in the operation 

of current energy systems, energy grids and in the buildings that are connected to them (see Figure 7). 

 

Figure 7 Paradigm shift: Toward building-to-grid services from energy-efficient smart buildings connected to 
sustainable grids dominated renewable energy sources [50]. 

Buildings have a certain energy flexibility potential. They have the ability to adapt or modulate their short-term 

(a few hours or a couple of days) energy demand and energy generation profile according to climate conditions, 

user needs and energy network requirements without jeopardizing the technical capabilities of the building 

systems and the comfort of occupants. 

Building energy flexibility strategies (in the form of demand response) enable load control/modulation to pro-

vide building-to-grid (B2G) services to the local energy grids. These B2G services support the matching of the 

energy demand profile with the energy supply profile in smart grids dominated by RES. They also help to tackle 

other grid challenges such as voltage and frequency stability in electrical grids, peak power limitations and 

local bottleneck effects in thermal and electrical grids, high costs and CO2-intensive operation of peak power 

generators, negative electricity prices, costly reinforcement or extension of the networks, or accelerated dete-

rioration of hydronic networks caused by the unstable operation of thermal grids. 

Currently, most of the large-scale orchestration of B2G services, provided by a multitude of different decen-

tralized prosumers and energy flexibility assets, is driven by incentive signals broadcast by energy grids (e.g., 

dynamic energy price or grid CO2 intensity). Energy end-users providing B2G services can thus be rewarded 

by optimizing building operation to minimize operational costs from the dynamic energy price on a short time 

horizon (typically 25 hours or up to a few days). As an alternative, the B2G service provider can be directly 

paid for completing a specific demand response action, e.g., reducing peak power demand by a pre-agreed 

amount over a specific time window. 

The development, testing, analysis and optimal management of large numbers of decentralized flexibility as-

sets and numerous B2G service providers, requires a robust streamlined and interoperable demand-response 

assessment framework comprising KPIs covering the different scenarios, system configurations and stake-

holders. It should also include reliable energy demand baseline models to establish the counterfactual refer-

ence energy profile of a building when performing demand response [39, 51]. 

Activity C3 focused on developing an online platform to gather, evaluate, compare, present and promote con-

crete cases of buildings providing services (such as demand response services) to the energy grid. 
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To that end, this activity addresses some important research gaps such as context, definitions and KPIs for 

building energy flexibility assessment, and the heterogeneity of data representations in datasets of B2G ser-

vices. It promotes the use of ontologies and semantic principles to standardize the definition and computation 

of KPIs.  It provides a structure for a Python package to streamline B2G service assessment from commonly 

available operational building data. 

A semantic/ontology-based approach appears to be the best way to ensure the interoperability of the different 

elements in the B2G ecosystem, and to support the portability of B2G services across heterogeneous build-

ings. In this way building energy flexibility assets and demand response resources can become digitally ena-

bled and increasingly ‘smart’ [52, 53]. 

The assessment tools of this Python package are implemented in an online web-application show-casing B2G 

service cases.  It enables any user to rapidly perform data-driven energy flexibility analysis on open-access or 

uploaded datasets. 

The Activity C3 workflow - from research to target objective – is illustrated in (Figure 8).  It is believed that the 

results, framework, recommendations and tools developed within the activity C3 will contribute to foster the 

large-scale development of B2G services for all types of energy networks in future sustainable smart energy 

grids dominated by renewable energy sources [51]. 

 

Figure 8 Workflow of the IEA EBC Annex 81-C3 activity on B2G applications and services [51]. 

4.2  Literature review summary on data-driven energy flexibility KPIs 

As discussed above, an increasing number of studies are quantifying the energy flexibility and demand re-

sponse of single buildings and clusters of buildings. However, most of these studies rely on numerical simula-

tions and perform energy flexibility assessments that are not necessarily possible for real buildings. In that 

context, activity C3 conducted a literature review of data-driven KPIs that are suitable for the operational phase 

of buildings performing B2G services and demand response. 
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It was found that most studies focus on residential buildings (48.9%) and commercial buildings (28.3%). The 

application scale is mainly at the single-building level (53.3%) and building cluster level (41.3%). Only 25.8% 

of the studies involve real measurements, 65.2% rely on numerical simulations [39]. 

The review highlights that the two main constraints in quantifying energy flexibility through operational building 

data analysis are (i) the lack of robust data-driven approaches for generating baseline load profiles without 

demand response activation (which are necessary for calculating baseline-dependent KPIs) and (ii) the lack 

of KPIs that can be computed without need of baseline or reference scenario inputs (i.e., baseline-free KPIs). 

A total of 81 distinct data-driven KPIs were identified in the reviewed scientific literature on building demand 

response. These KPIs can be classified into 12 core energy flexibility categories: 

● Peak power shedding 

● Energy/average power load shedding 

● Peak power/energy rebound 

● Valley filling 

● Load shifting 

● Demand profile reshaping 

● Energy storage capability 

● Demand response energy efficiency 

● Demand response costs/savings 

● Demand response emission/environmental impact 

● Grid interaction 

● Impact on indoor environmental quality 

In addition, 29 other KPIs that are not directly related to energy flexibility are typically found in studies about 

demand response. These KPIs belong to 4 more generic building performance categories: 

● Energy efficiency 

● Costs and savings 

● CO2 emissions/environmental impact 

● Grid interaction 

Table 6 and Table 7 below show the most popular (most frequently used in scientific studies) data-driven 

energy flexibility KPIs. 

Table 6 Most popular baseline-required KPIs for assessing demand response and energy flexibility [39, 51]. 

KPI denomination Definition 

Energy efficiency of demand response 
action 

The difference in total energy use between the scenario with 
demand response and the reference scenario without demand 
response divided by the difference in energy use during the length 
of the demand response action between the scenario with 
demand response and the reference scenario without demand 
response 

Flexibility savings index 
The ratio between the energy costs of the scenario with demand 
response and the energy costs of the reference scenario without 
demand response 

Peak power shedding 
The difference between the peak power use of reference scenario 
without demand response and the peak power use of the scenario 
with demand response 
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Table 7 Most popular baseline-free KPIs for assessing demand response and energy flexibility [39, 51]. 

KPI denomination Definition 

Flexibility factor 
The difference between the energy use during non-peak periods 
and peak periods divided by the sum of energy use during non-
peak periods and peak periods 

Energy shift flexibility factor 
The difference between the energy use during low-price periods 
and high-price periods divided by the sum of energy use during 
low-price periods and high-price periods 

Load factor 
The ratio between the average power use and the maximum 
power use 

 

81% of the data-driven energy flexibility KPIs found in the scientific literature require a baseline to be computed. 

As mentioned above, establishing a baseline energy profile (a counterfactual energy demand when no demand 

response event occurs) is challenging. Ideally, a baseline estimation should be robust, transparent and prevent 

the possibility of manipulating B2G service market with reward mechanisms based on baseline-required KPIs. 

However, there is currently no consensus about which data-driven energy demand baseline generation method 

would perform best, especially at low aggregation levels [39, 51]. The most commonly used data-driven meth-

ods that are applicable for single-building and district energy demand baseline generation are as follows: 

● Control group methods: Construct a baseline from monitoring data of buildings that are similar to 

the target ones with equivalent boundary conditions (weather, occupancy, operation) but do not per-

form any demand response at the time of evaluation [39]. 

● The averaging methods (similar day look-up approach or XofY): One of the most popular XofY load 

estimation technique is the HighXofY, which takes the average load of the X highest demand days 

from a set of Y admissible days prior to the demand response event [39]. 

● Regression models: Load forecasting is often performed with robust autoregressive models, such as 

ARMA (Auto Regressive Moving Average), ARIMA (Auto-Regressive Integrated Moving Average), 

GAM (Generalized Additive Model), or LASSO (Least Absolute Shrinkage and Selection Operator). 

However, these models may require large historical data to be fitted correctly [39]. 

● Shallow machine learning methods: Currently, many popular machine learning methods employ 

relatively simple models with a small number of layers or processing stages (shallow artificial neural 

networks, decision trees, random forests). These models present a limited capacity to learn complex 

and non-linear patterns from multi data with high dimensionality. They are thus only adequate for data 

with relatively simple patterns and straightforward relationships between features and outputs. 

● Deep machine learning methods: In recent years, deep machine learning methods have emerged 

to leverage deep neural networks (DNN) with a very large number of hidden layers and neurons, re-

current architecture and attention mechanisms. These DNNs are very well suited to learn intricate 

patterns and representations from time series data (typical dynamic data from building systems) and 

generate forecasts of building energy profile and indoor environment variations (sequence-to-se-

quence forecasting) [54, 55]. In particular, long short-term memory and time-delay neural networks, 

have gained popularity for building energy profile forecasting. However, DNNs require a large amount 

of training data to outperform more simple and robust statistical methods. Large building operation 

datasets with sufficient quality for DNN training are scarce, but this limitation can be mitigated by em-

ploying transfer learning principles and synthetic data generators [56]. 

● Hybrid models: Combining some of the abovementioned modeling approaches has also been ex-

plored to perform load demand forecasting. 
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4.3  Building demand response dataset collection and analysis 

In order to develop, study, test and benchmark B2G services, at scale, one must have access to diverse 

datasets from buildings and clusters of buildings performing demand response. Although several studies have 

produced such simulation or monitoring data to test their hypothesis, getting access to it is very difficult. Activity 

C3 attempted to collect all open-access building energy flexibility datasets (in the form of time series data, 

along with the appropriate metadata and case description) from publicly available datasets and data platforms 

(e.g., Kaggle, Data-in-Brief), scientific publications, and via direct contact with research teams and scientific 

communities (e.g., IEA EBC Annex 81, 82, 83, and 84).  

However, from the 330 datasets identified as potentially of interest, only 16 were actually deemed adequate 

with proper descriptions and open access (or soon to be open access) data (see Figure 9). A very large share 

of the dataset candidates were miscategorized, out of scope, without sufficient description or unavailable to 

participants outside of the original research group that had generated the data [39]. This denotes a clear lack 

of open dataset culture in the building demand response community, which can hinder future developments in 

this field. It is thus highly recommended to put more effort into curating, describing and sharing future datasets 

generated in upcoming B2G service studies and pilot projects. 

 

Figure 9 Building demand response dataset collection campaign by the IEA EBC Annex 81-C3 activity [39]. 

The 16 collected datasets represent a wide variety of building energy flexibility studies. They included data 

from real monitored buildings, hardware-in-the-loop setups, and numerical simulations with different building 

typologies. Most datasets were associated with flexibility in electrical grids, and only a few were connected to 

district heating networks.  

Most of the reported demand response schemes were based on time-of-use, real-time pricing, and flat-rating 

pricing tariff programs. Load shifting and load shedding were the most common flexibility modes. HVAC sys-

tems were the most frequent resources to deliver flexibility, often triggered by temperature adjustments. 

By comparing the primitive variables required for calculating the different data-driven building energy flexibility 

KPIs and the features of the collected B2G datasets, one can see in Table 8 that there is not a very good 

match between the former and the later. This suggests that the collected datasets have limited usefulness for 

performing demand response assessment, and that most of the reviewed KPIs are restricted in their applica-

bility.  
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The most commonly available features across datasets were indoor temperature, followed by end-use energy 

demand, thermostat setpoints, occupancy and price signal. Since event timing and power demand are among 

the most critical variables required by the KPIs, and most datasets do not include them, additional modelling 

and calculations are needed to derive them. For instance, the price or emission signal can be used to define 

event timing and energy consumption to determine power demand. 

Overall, based on the KPI data requirements and data availability, the three most easily calculated energy 

flexibility KPIs are demand response energy efficiency, demand profile reshaping and energy/average power 

load shedding. One can also note that the value of a dataset for KPI computation does not increase with the 

number of variables it contains. While some datasets have many variables, they may not have the most com-

monly required ones for demand response assessment [39, 51]. 

Table 8 Input variables required by the KPIs vs available ones in the collected B2G datasets [39, 51] 

 

4.4  Toolbox for data-driven assessment of energy flexibility 

At the moment, there is no standard way to assess B2G services. The different building stakeholders, building 

owners, tenants, building managers, policymakers, utility companies, and grid operators employ various KPIs 

to evaluate the effectiveness of flexibility assets and to ascertain the viability of new technologies, policies, 

demand response programs and control strategies. 

To address this limitation, Activity C3 has developed an open-source toolbox in the form of a Python package 

(energy-flexibility-kpis) for the data-driven assessment of demand response and energy flexibility of buildings. 

This Python package leverages the EFOnt ontology [57] to apply semantic principles for the standardization 

of KPI definitions and computation. A semantic/ontology-based approach appears to be the best way to 

streamline demand response assessment from commonly available operational building data. It ensures the 

interoperability of this toolbox with the different elements in the B2G ecosystem, and supports the portability 

of the B2G services across heterogeneous buildings.  

 

Primitive variables 
% required by 

KPIs 
% available in 

datasets 

Event timing 37.66% 18.75% 

Energy consumption 35.06% 81.25% 

Power demand 32.47% 6.25% 

Event request action 24.68% 37.50% 

Price signal 16.88% 50.00% 

Energy generation 12.99% 25.00% 

Event request size 11.69% 0.00% 

Indoor temperature 5.19% 93.75% 

Thermostat setpoint 5.19% 62.50% 

Emission signal 3.90% 12.50% 

Storage volume 2.60% 0.00% 

Monetary incentives 2.60% 0.00% 

Occupancy 1.30% 56.25% 

Indoor CO2 1.30% 12.50% 
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Combined with other relevant ontologies, representing various useful knowledge domains for B2G services, 

the EFOnt ontology enables the creation of semantic data models that can facilitate the standardization of the 

demand response KPIs’ definition, their data specification/requirements, data collection procedure, pre-pro-

cessing, computation procedure and visualizations (see Figure 10). The demand response and building energy 

flexibility KPIs found in the scientific literature are progressively implemented in the energy-flexibility-kpis Py-

thon package, together with all necessary data treatment sub-functions and key data-driven methods for gen-

erating an energy profile baseline [51, 57] . 

 

Figure 10 Semantic description of an energy flexibility KPI and its input variables in the EFOnt ontology.  
The different properties and attributes of the KPI (i.e., the denomination of the KPI, its associated equation, its 
type, the way this KPI should be displayed, its associated Python function, the list of needed input variables for 
the computation of the KPI) are defined within the EFOnt ontology. The EFOnt ontology is extended to integrate 
the definitions of the transform functions that are needed to convert the raw data from the building operation into 

the required input variables to compute the KPI, together with the parameters contained in a configuration file 
that indicate the settings of the assessment (e.g., evaluation window, or resampling methods) [51, 57]. 

This energy-flexibility-kpis Python package for the assessment of demand response and energy flexibility strat-

egies can be found in the dedicated GitHub repository https://github.com/HichamJohra/energy_flexibility_kpis 

(under development) and can be installed from pypi.org (https://pypi.org/project/energy-flexibility-kpis/): pip 

install energy-flexibility-kpis. 

4.5  Online platform for collection and analysis of B2G datasets 

To showcase B2G services and the ease of use of the building energy flexibility assessment tools presented 

above, the energy-flexibility-kpis Python package was implemented into a data analysis workflow on an online 

web-app (see Figure 11). This online platform also includes an ontology explorer to navigate through the EFOnt 

ontology and the latest implementation of the energy-flexibility-kpis Python package together with a compre-

hensive selection interface to identify the most adequate demand response KPIs, depending on the type of 

stakeholder, data availability/features, performance goals and flexibility assets. 

Moreover, the collected open-access datasets of buildings performing demand response are listed and loaded 

onto that web-app as examples. One can thus easily select those B2G service cases and perform energy 

flexibility assessment and comparison with all KPIs implemented in the Python package. In addition to show-

casing various examples of B2G services, this online platform encourages users to share their datasets in 

open access. 

This online platform (web-app) for the collection and analysis of building demand response datasets can be 

accessed with the following link: https://aau-ef-kpi-web-app.build.aau.dk/ 

https://github.com/HichamJohra/energy_flexibility_kpis
https://pypi.org/project/energy-flexibility-kpis/)
https://aau-ef-kpi-web-app.build.aau.dk/
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Figure 11 Data-driven energy flexibility quantification process for B2G applications [51]. 
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5. Conclusions and future direction  

During the course of ANNEX 81, Subtask C has engaged experts from many countries across four continents.  

Findings from Subtask C have led to the publication of three journal papers and one conference paper.   

We (i) performed case studies to evaluate the feasibility of implementing reported building performance KPIs 

using data from five real buildings, (ii) collected 16 datasets for building energy flexibility studies, and (iii) 

assisted the development of a comprehensive data repository for FDD studies.  An online platform with open-

source toolbox was developed for analysis of B2G services and building energy flexibility evaluation.  More 

specifically,  

Activity C1 examined the KPIs of building operational performance with three key focuses:  

• What KPIs exist in the building and energy-related literature,  

• what KPIs can be implemented in existing infrastructures of buildings, and  

• what KPIs are important to stakeholders.  

Over 400 KPIs were identified, collected and reviewed, spanning building performance areas related to occu-

pants [4], building operation, grid [39], and smart technology. Despite the abundance of proposed KPIs in the 

literature, challenges persist due to unclear definitions, unspecified sensor/meter data requirements, and a 

lack of real-life contextualization, especially at the whole-building level. The case study revealed that only 

about one-quarter of the gathered KPIs could be computed using BMS data from five case study buildings, 

with thermal comfort and energy-related KPIs being the most readily calculable.  

The case study's results align with literature findings, underscoring that while these KPIs can be computed, 

their definitions often overlook the complexity of real-world building scenarios, introducing ambiguity and com-

promising reliability in calculations. Moreover, the stakeholders survey indicated that the KPIs related to occu-

pants' health are the most important among all others. Nevertheless, it is worth noting the substantial diver-

gence in the priority of building performance aspects among individual stakeholders.  

In conclusion, there is a clear misalignment among KPI definitions in the literature, the data that is readily 

available from the current BMS, and stakeholders’ needs. Further research is needed to contextualize KPIs 

across diverse application scenarios while considering stakeholders' perspectives. This step is essential for 

bridging existing gaps and ensuring a more cohesive integration of KPIs into the intricate landscape of building 

operational performance benchmarking. 

Activity C2 defined the concept of data-driven FDD algorithms as those that are trained or built from data 

using machine learning or multivariate statistical analysis methods.  Based on this definition, a thorough liter-

ature review was performed to understand the following topics related to data-driven FDD:  

• What are typic processes and methods of data-driven FDD?  

• What kind of building systems have data-driven FDD been applied to?  

• What are the reported faults for these systems?   

• How to evaluate data-driven FDD?  

The literature review [38] revealed that many promising methods and frameworks are reported for implement-

ing data-driven FDD, step by step from collecting data to detecting anomalies, to isolating root causes. How-

ever, there is a lack of data-driven fault prognosis studies.  
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Data-driven FDD has been applied to most building systems.  Nevertheless, the majority of the reported studies 

are based on simulated or laboratory experimental data. There are comprehensive evaluation metrics devel-

oped for data-driven FDD performance evaluations.   

To further promote market adoption of data-driven FDD methods, real time and real-building implementations 

are needed.  Consequently, Activity C2 compiled a repository of FDD data and software, leveraging various 

on-going activities of the participants.  Based on findings from the literature review and data repository, a 

roadmap was developed attempting to guide industry stakeholders through the ecosystem of FDD.  The eco-

system includes 1) FDD development and implementation, 2) Running AFDD solutions in buildings, 3) Data 

management, and 4) Fault analysis and handling.  

Five categories of barriers were identified for each part of the above ecosystems.  These were economic and 

business barriers; technological and technical barriers; user-related barriers; regulatory barriers; and social 

and societal barriers. Stakeholders and potential solutions for each barrier in each part of the FDD ecosystem 

were identified and discussed in the roadmap.  The roadmap is expected to facilitate deeper market adoption 

and deployment of data-driven FDD.   

Activity C3 aimed to contribute to the standardization of B2G service assessment.  Collaborating with C1, 

Activity C3 firstly identified 81 data-driven KPIs that are essential for the operational phase of building energy 

flexibility assessment. These KPIs can be classified into 12 core energy flexibility categories.   

It was found that most studies relied on numerical simulations (65.2%) [39]. The review highlighted two main 

constraints in quantifying energy flexibility through operational building data analysis.  These are (i) the lack of 

robust data-driven approaches for generating baseline load profiles without demand response activation 

(which are necessary for calculating baseline-dependent KPIs) and (ii) the lack of KPIs that can be computed 

without baseline or reference scenario inputs (baseline-free KPIs).   

To help develop and benchmark B2G services at scale, Activity C3 collected 16 datasets that represent a wide 

variety of B2G studies and include data representing various building types from real buildings, hardware-in-

the-loop testbeds, and numerical simulations.  It was found that there is a poor match between the primitive 

variables required for calculating the different data-driven building energy flexibility KPIs and the features of 

the collected B2G datasets. This denotes a limited usefulness of the collected datasets for performing demand 

response assessment, and a restricted applicability of most reviewed KPIs.  

The three most easily calculated energy flexibility KPIs are demand response energy efficiency, demand profile 

reshaping and energy/average power load shedding.  Leveraging the EFOnt ontology [57], Activity C3 devel-

oped an open-source toolbox in the form of a Python package (energy-flexibility-kpis) for data-driven assess-

ment of demand response and energy flexibility in buildings. The assessment tools of this Python package are 

implemented in an online web-application show-casing B2G service cases.  They enable any user to rapidly 

perform data-driven energy flexibility analysis on open-access or uploaded datasets.  

It is believed that the results, framework, recommendations and tools developed within the activity C3 will 

contribute to foster the large-scale development of B2G services for all types of energy networks in future 

sustainable smart energy grids dominated by renewable energy sources [51].   

 

 

 

  



 

 

 
43/46 

References 

[1] J. C. Van Gorp, "Using key performance indicators to manage energy costs," Strategic 
planning for energy and the environment, vol. 25, no. 2, pp. 9-25, 2005. 

[2] H. Li, Z. Wang, and T. Hong, "Occupant-Centric key performance indicators to inform building 
design and operations," Journal of Building Performance Simulation, vol. 14, no. 6, pp. 814-
842, 2021. 

[3] S. Verbeke, D. Aerts, G. Reynders, Y. Ma, and P. Waide, "Final report on the technical 
support to the development of a smart readiness indicator for buildings," European 
Commission: Brussels, Belgium, 2020. 

[4] S. Sleiman et al., "Overview of occupant-centric KPIs for building performance and their value 
to various building stakeholders," Energy and Buildings, p. 114704, 2024. 

[5] H. Van Der Veer and A. Wiles, "Achieving technical interoperability," European 
telecommunications standards institute, 2008. 

[6] M. Ginocchi, A. Ahmadifar, F. Ponci, and A. Monti, "Application of a smart grid interoperability 
testing methodology in a real-time hardware-in-the-loop testing environment," Energies, vol. 
13, no. 7, p. 1648, 2020. 

[7] T. Ford, J. Colombi, S. Graham, and D. Jacques, "The interoperability score," in Proceedings 
of the Fifth Annual Conference on Systems Engineering Research, 2007, pp. 1-10.  

[8] M. van Amelsvoort, C. Delfs, and M. Uslar, "Application of the interoperability score in the 
smart grid domain," in 2015 IEEE 13th International Conference on Industrial Informatics 
(INDIN), 2015: IEEE, pp. 442-447.  

[9] G. Pinto, R. Messina, H. Li, T. Hong, M. S. Piscitelli, and A. Capozzoli, "Sharing is caring: An 
extensive analysis of parameter-based transfer learning for the prediction of building thermal 
dynamics," Energy and Buildings, vol. 276, p. 112530, 2022. 

[10] Z. Zhu, K. Lin, A. K. Jain, and J. Zhou, "Transfer learning in deep reinforcement learning: A 
survey," IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023. 

[11] H. Johra, M. Schaffer, G. Chaudhary, H. S. Kazmi, J. Le Dréau, and S. Petersen, "What 
metrics does the building energy performance community use to compare dynamic models?," 
in IBPSA Building Simulation 2023, 2023: International Building Performance Simulation 
Association, pp. 861-868.  

[12] E. Lee and W. Rhee, "Individualized short-term electric load forecasting with deep neural 
network based transfer learning and meta learning," IEEE Access, vol. 9, pp. 15413-15425, 
2021. 

[13] Y. Ding, C. Huang, K. Liu, P. Li, and W. You, "Short-term forecasting of building cooling load 
based on data integrity judgment and feature transfer," Energy and Buildings, vol. 283, p. 
112826, 2023. 

[14] Y. Lu, Z. Tian, R. Zhou, and W. Liu, "A general transfer learning-based framework for thermal 
load prediction in regional energy system," Energy, vol. 217, p. 119322, 2021. 

[15] C. Peng, Y. Tao, Z. Chen, Y. Zhang, and X. Sun, "Multi-source transfer learning guided 
ensemble LSTM for building multi-load forecasting," Expert Systems with Applications, vol. 
202, p. 117194, 2022. 

[16] K. Li, B. Wei, Q. Tang, and Y. Liu, "A data-efficient building electricity load forecasting method 
based on maximum mean discrepancy and improved TrAdaBoost algorithm," Energies, vol. 
15, no. 23, p. 8780, 2022. 

[17] Y. Jin, M. A. Acquah, M. Seo, and S. Han, "Short-term electric load prediction using transfer 
learning with interval estimate adjustment," Energy and Buildings, vol. 258, p. 111846, 2022. 

[18] G. Mosaico, M. Saviozzi, F. Silvestro, A. Bagnasco, and A. Vinci, "Simplified state space 
building energy model and transfer learning based occupancy estimation for HVAC optimal 
control," in 2019 IEEE 5th international forum on research and technology for society and 
industry (RTSI), 2019: IEEE, pp. 353-358.  

[19] P. Leeraksakiat and W. Pora, "Occupancy forecasting using lstm neural network and transfer 
learning," in 2020 17th International Conference on Electrical Engineering/Electronics, 



 

 

 
44/46 

Computer, Telecommunications and Information Technology (ECTI-CON), 2020: IEEE, pp. 
470-473.  

[20] M. Weber, C. Doblander, and P. Mandl, "Towards the detection of building occupancy with 
synthetic environmental data," arXiv preprint arXiv:2010.04209, 2020. 

[21] A. Anjomshoaa and E. Curry, "Transfer learning in smart environments," Machine Learning 
and Knowledge Extraction, vol. 3, no. 2, pp. 318-332, 2021. 

[22] B. Pardamean, H. H. Muljo, T. W. Cenggoro, B. J. Chandra, and R. Rahutomo, "Using 
transfer learning for smart building management system," Journal of Big Data, vol. 6, pp. 1-
12, 2019. 

[23] M. Khalil, S. McGough, Z. Pourmirza, M. Pazhoohesh, and S. Walker, "Transfer learning 
approach for occupancy prediction in smart buildings," in 2021 12th International renewable 
engineering conference (IREC), 2021: IEEE, pp. 1-6.  

[24] W.-H. Chen, P.-C. Cho, and Y.-L. Jiang, "Activity Recognition Using Transfer Learning," 
Sensors & Materials, vol. 29, 2017. 

[25] K. H. Andersen, M. Schaffer, H. Johra, A. Marszal-Pomianowska, W. O'Brien, and P. K. 
Heiselberg, "Evaluation of Various Algorithms' Performance in Supervised Binary 
Classification for Occupant Detection Using a Dataset from a Residential Building," 2023. 

[26] G. Pinto, Z. Wang, A. Roy, T. Hong, and A. Capozzoli, "Transfer learning for smart buildings: 
A critical review of algorithms, applications, and future perspectives," Advances in Applied 
Energy, vol. 5, p. 100084, 2022. 

[27] P. Lissa, M. Schukat, M. Keane, and E. Barrett, "Transfer learning applied to DRL-Based 
heat pump control to leverage microgrid energy efficiency," Smart Energy, vol. 3, p. 100044, 
2021. 

[28] D. Coraci, S. Brandi, T. Hong, and A. Capozzoli, "An innovative heterogeneous transfer 
learning framework to enhance the scalability of deep reinforcement learning controllers in 
buildings with integrated energy systems," in Building Simulation, 2024, vol. 17, no. 5: 
Springer, pp. 739-770.  

[29] D. Coraci, S. Brandi, T. Hong, and A. Capozzoli, "Online transfer learning strategy for 
enhancing the scalability and deployment of deep reinforcement learning control in smart 
buildings," Applied Energy, vol. 333, p. 120598, 2023. 

[30] Y. Chen, Y. Ye, J. Liu, L. Zhang, W. Li, and S. Mohtaram, "Machine learning approach to 
predict building thermal load considering Feature variable dimensions: an office building case 
study," Buildings, vol. 13, no. 2, p. 312, 2023. 

[31] W. Li et al., "A perspective survey on deep transfer learning for fault diagnosis in industrial 
scenarios: Theories, applications and challenges," Mechanical Systems and Signal 
Processing, vol. 167, p. 108487, 2022. 

[32] B. Yang, Y. Lei, S. Xu, and C.-G. Lee, "An optimal transport-embedded similarity measure 
for diagnostic knowledge transferability analytics across machines," IEEE Transactions on 
Industrial Electronics, vol. 69, no. 7, pp. 7372-7382, 2021. 

[33] G. Li, L. Chen, J. Liu, and X. Fang, "Comparative study on deep transfer learning strategies 
for cross-system and cross-operation-condition building energy systems fault diagnosis," 
Energy, vol. 263, p. 125943, 2023. 

[34] H. Li, T. Hong, S. H. Lee, and M. Sofos, "System-level key performance indicators for building 
performance evaluation," Energy and Buildings, vol. 209, p. 109703, 2020. 

[35] H. H. Hosamo, P. R. Svennevig, K. Svidt, D. Han, and H. K. Nielsen, "A Digital Twin predictive 
maintenance framework of air handling units based on automatic fault detection and 
diagnostics," Energy and Buildings, vol. 261, p. 111988, 2022. 

[36] EN 13306: 2017 Maintenance - Maintenance terminology, E. C. f. Standardization, 2017.  
[37] EN 15341:2019 Maintenance - Maintenance Key Performance Indicators, E. C. f. 

Standardization, 2019.  
[38] Z. Chen et al., "A review of data-driven fault detection and diagnostics for building HVAC 

systems," Applied Energy, vol. 339, p. 121030, 2023. 
[39] H. Li et al., "Data-driven key performance indicators and datasets for building energy flexibility: 

A review and perspectives," Applied Energy, vol. 343, p. 121217, 2023. 



 

 

 
45/46 

[40] Z. L. Chen et al., "A review of data-driven fault detection and diagnostics for building HVAC 
systems," (in English), Appl. Energy, Review vol. 339, p. 18, Jun 2023, Art no. 121030, doi: 
10.1016/j.apenergy.2023.121030. 

[41] J. Braun. "RP-1043 -- Fault Detection And Diagnostic (FDD) Requirements And Evaluation 
Tools For Chillers." ASHRAE. https://www.techstreet.com/standards/rp-1043-fault-detection-
and-diagnostic-fdd-requirements-and-evaluation-tools-for-chillers?product_id=1716217 
(accessed. 

[42] J. Wen. "RP-1312 -- Tools for Evaluating Fault Detection and Diagnostic Methods for Air-
Handling Units." ASHRAE. https://www.techstreet.com/standards/rp-1312-tools-for-
evaluating-fault-detection-and-diagnostic-methods-for-air-handling-
units?product_id=1833299. (accessed. 

[43] J. Granderson, G. J. Lin, A. Harding, P. Im, and Y. Chen, "Building fault detection data to aid 
diagnostic algorithm creation and performance testing," (in English), Sci. Data, Article; Data 
Paper vol. 7, no. 1, p. 14, Feb 2020, Art no. 65, doi: 10.1038/s41597-020-0398-6. 

[44] J. Granderson et al., "A labeled dataset for building HVAC systems operating in faulted and 
fault-free states," (in English), Sci. Data, Article; Data Paper vol. 10, no. 1, p. 13, Jun 2023, 
Art no. 342, doi: 10.1038/s41597-023-02197-w. 

[45] S. Frank, G. J. Lin, X. Jjn, R. Singla, A. Farthing, and J. Granderson, "A performance 
evaluation framework for building fault detection and diagnosis algorithms," (in English), 
Energy Build., Article vol. 192, pp. 84-92, Jun 2019, doi: 10.1016/j.enbuild.2019.03.024. 

[46] G. J. Lin, H. Kramer, V. Nibler, E. Crowe, and J. Granderson, "Building Analytics Tool 
Deployment at Scale: Benefits, Costs, and Deployment Practices," (in English), Energies, 
Article vol. 15, no. 13, p. 17, Jul 2022, Art no. 4858, doi: 10.3390/en15134858. 

[47] J. Granderson, Lin, Guanjing, Singla, Rupam, Mayhorn, Ebony, Ehrlich, Paul, and Draguna 
Vrabie., "Commercial Fault Detection and Diagnostics Tools: What They Offer, How They 
Differ, and What’s Still Needed," Lawrence Berkeley National Laboratory, 2018, doi: 
10.20357/B7V88H. 

[48] K. H. Andersen, S. P. Melgaard, H. Johra, A. Marszal-Pomianowska, R. L. Jensen, and P. K. 
Heiselberg, "Barriers and drivers for implementation of automatic fault detection and 
diagnosis in buildings and HVAC systems: An outlook from industry experts," (in English), 
Energy Build., Article vol. 303, p. 20, Jan 2024, Art no. 113801, doi: 
10.1016/j.enbuild.2023.113801. 

[49] S. P. Melgaard, K. H. Andersen, A. Marszal-Pomianowska, R. L. Jensen, and P. K. 
Heiselberg, "Fault Detection and Diagnosis Encyclopedia for Building Systems: A Systematic 
Review," (in English), Energies, Review vol. 15, no. 12, p. 50, Jun 2022, Art no. 4366, doi: 
10.3390/en15124366. 

[50] H. Johra, "What is building energy flexibility–demand response?," 2023. 
[51] H. Johra, H. Li, F. de Andrade Pereira, K. Nweye, L. Chamari, and Z. Nagy, "IEA EBC Annex 

81–Data-Driven Smart Buildings: Building-to-Grid Applications," in Proceedings of Building 
Simulation 2023: 18th Conference of International Building Performance Simulation 
Association. Shanghai, China, 4-6 September 2023, 2023: IBPSA.  

[52] F. de Andrade Pereira et al., "Enabling portable demand flexibility control applications in 
virtual and real buildings," Journal of Building Engineering, vol. 86, p. 108645, 2024. 

[53] F. de Andrade Pereira et al., "A Semantics-Driven Framework to Enable Demand Flexibility 
Control Applications in Real Buildings," Available at SSRN 4819071. 

[54] G. Chaudhary, H. Johra, L. Georges, and B. Austbø, "pymodconn: A python package for 
developing modular sequence-to-sequence control-oriented deep neural networks," 
SoftwareX, vol. 24, p. 101599, 2023. 

[55] G. Chaudhary, H. Johra, L. Georges, and B. Austbø, "Predicting the performance of hybrid 
ventilation in buildings using a multivariate attention-based biLSTM Encoder–Decoder," in 
Journal of Physics: Conference Series, 2023, vol. 2654, no. 1: IOP Publishing, p. 012057.  

[56] G. Chaudhary, H. Johra, L. Georges, and B. Austbø, "Synconn_build: A python based 
synthetic dataset generator for testing and validating control-oriented neural networks for 
building dynamics prediction," MethodsX, vol. 11, p. 102464, 2023. 

[57] H. Li and T. Hong, "A semantic ontology for representing and quantifying energy flexibility of 
buildings," Advances in Applied Energy, vol. 8, p. 100113, 2022. 

https://www.techstreet.com/standards/rp-1043-fault-detection-and-diagnostic-fdd-requirements-and-evaluation-tools-for-chillers?product_id=1716217
https://www.techstreet.com/standards/rp-1043-fault-detection-and-diagnostic-fdd-requirements-and-evaluation-tools-for-chillers?product_id=1716217
https://www.techstreet.com/standards/rp-1312-tools-for-evaluating-fault-detection-and-diagnostic-methods-for-air-handling-units?product_id=1833299
https://www.techstreet.com/standards/rp-1312-tools-for-evaluating-fault-detection-and-diagnostic-methods-for-air-handling-units?product_id=1833299
https://www.techstreet.com/standards/rp-1312-tools-for-evaluating-fault-detection-and-diagnostic-methods-for-air-handling-units?product_id=1833299


 

 

 
46/46 

 

 

 

ANNEX 81 

www.iea-ebc.org 


